Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Humanitarian Logistics and Supply Chain Management ; 13(1):74-90, 2023.
Article in English | ProQuest Central | ID: covidwho-2231343

ABSTRACT

PurposeThe recent COVID-19 outbreak and severe natural disasters make the design of the humanitarian supply chain network (HSCN) a crucial strategic issue in a pre-disaster scenario. The HSCN design problem deals with the location/allocation of emergency response facilities (ERFs). This paper aims to propose and demonstrate how to design an efficient HSCN configuration under the risk of ERF disruptions.Design/methodology/approachThis paper considers four performance measures simultaneously for the HSCN design by formulating a weighted goal programming (WGP) model. Solving the WGP model with different weight values assigned to each performance measure generates various HSCN configurations. This paper transforms a single-stage network into a general two-stage network, treating each HSCN configuration as a decision-making unit with two inputs and two outputs. Then a two-stage network data envelopment analysis (DEA) approach is applied to evaluate the HSCN schemes for consistently identifying the most efficient network configurations.FindingsAmong various network configurations generated by the WGP, the single-stage DEA model does not consistently identify the top-ranked HSCN schemes. In contrast, the proposed transformation approach identifies efficient HSCN configurations more consistently than the single-stage DEA model. A case study demonstrates that the proposed transformation method could provide a more robust and consistent evaluation for designing efficient HSCN systems. The proposed approach can be an essential tool for federal and local disaster response officials to plan a strategic design of HSCN.Originality/valueThis study presents how to transform a single-stage process into a two-stage network process to apply the general two-stage network DEA model for evaluating various HSCN configurations. The proposed transformation procedure could be extended for designing some supply chain systems with conflicting performance metrics more effectively and efficiently.

2.
Journal of Humanitarian Logistics and Supply Chain Management ; 2022.
Article in English | Web of Science | ID: covidwho-2191512

ABSTRACT

PurposeThe recent COVID-19 outbreak and severe natural disasters make the design of the humanitarian supply chain network (HSCN) a crucial strategic issue in a pre-disaster scenario. The HSCN design problem deals with the location/allocation of emergency response facilities (ERFs). This paper aims to propose and demonstrate how to design an efficient HSCN configuration under the risk of ERF disruptions.Design/methodology/approachThis paper considers four performance measures simultaneously for the HSCN design by formulating a weighted goal programming (WGP) model. Solving the WGP model with different weight values assigned to each performance measure generates various HSCN configurations. This paper transforms a single-stage network into a general two-stage network, treating each HSCN configuration as a decision-making unit with two inputs and two outputs. Then a two-stage network data envelopment analysis (DEA) approach is applied to evaluate the HSCN schemes for consistently identifying the most efficient network configurations.FindingsAmong various network configurations generated by the WGP, the single-stage DEA model does not consistently identify the top-ranked HSCN schemes. In contrast, the proposed transformation approach identifies efficient HSCN configurations more consistently than the single-stage DEA model. A case study demonstrates that the proposed transformation method could provide a more robust and consistent evaluation for designing efficient HSCN systems. The proposed approach can be an essential tool for federal and local disaster response officials to plan a strategic design of HSCN.Originality/valueThis study presents how to transform a single-stage process into a two-stage network process to apply the general two-stage network DEA model for evaluating various HSCN configurations. The proposed transformation procedure could be extended for designing some supply chain systems with conflicting performance metrics more effectively and efficiently.

SELECTION OF CITATIONS
SEARCH DETAIL